A New Discontinuous Galerkin Method for Hamilton-Jacobi Equations

نویسندگان

  • Jue Yan
  • Stanley Osher
چکیده

In this paper we propose a new local discontinuous Galerkin method to directly solve Hamilton-Jacobi equations. The scheme is a natural extension of the monotone scheme. For the linear case, the method is equivalent to the discontinuous Galerkin method for conservation laws. Thus, stability and error analysis are obtained under the framework of conservation laws. For both convex and nonconvex Hamiltonian, optimal (k+1)-th order of accuracy for smooth solutions are obtained with piecewise k-th order polynomial approximations. The scheme is numerically tested on a variety of one and two dimensional problems. The method works well to capture sharp corners (discontinuous derivatives) and converges to the viscosity solution. AMS subject classification: 35Q53

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations

In this paper, we propose a new discontinuous Galerkin finite element method to solve the Hamilton–Jacobi equations. Unlike the discontinuous Galerkin method of [C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM Journal on Scientific Computing 21 (1999) 666–690.] which applies the discontinuous Galerkin framework on the conservation law system ...

متن کامل

A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations

In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general...

متن کامل

Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations

In this note, we reinterpret a discontinuous Galerkin method originally developed by Huand Shu [1] (see also [2]) for solving Hamilton-Jacobi equations. By this reinterpretation,numerical solutions will automatically satisfy the curl-free property of the exact solutionsinside each element. This new reinterpretation allows a method of lines formulation, whichrenders a more na...

متن کامل

A second order discontinuous Galerkin fast sweeping method for Eikonal equations

In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...

متن کامل

A Discontinuous Galerkin Solver for Front Propagation

We propose a new discontinuous Galerkin method based on [Y. Cheng and C.-W. Shu, J. Comput. Phys., 223 (2007), pp. 398–415] to solve a class of Hamilton–Jacobi equations that arises from optimal control problems. These equations are connected to front propagation problems or minimal time problems with nonisotropic dynamics. Several numerical experiments show the relevance of our method, in part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010